Handoff from recombinase to replisome: insights from transposition.
نویسندگان
چکیده
Bacteriophage Mu replicates as a transposable element, exploiting host enzymes to promote initiation of DNA synthesis. The phage-encoded transposase MuA, assembled into an oligomeric transpososome, promotes transfer of Mu ends to target DNA, creating a fork at each end, and then remains tightly bound to both forks. In the transition to DNA synthesis, the molecular chaperone ClpX acts first to weaken the transpososome's interaction with DNA, apparently activating its function as a molecular matchmaker. This activated transpososome promotes formation of a new nucleoprotein complex (prereplisome) by yet unidentified host factors [Mu replication factors (MRF alpha 2)], which displace the transpososome in an ATP-dependent reaction. Primosome assembly proteins PriA, PriB, DnaT, and the DnaB--DnaC complex then promote the binding of the replicative helicase DnaB on the lagging strand template of the Mu fork. PriA helicase plays an important role in opening the DNA duplex for DnaB binding, which leads to assembly of DNA polymerase III holoenzyme to form the replisome. The MRF alpha 2 transition factors, assembled into a prereplisome, not only protect the fork from action by nonspecific host enzymes but also appear to aid in replisome assembly by helping to activate PriA's helicase activity. They consist of at least two separable components, one heat stable and the other heat labile. Although the MRF alpha 2 components are apparently not encoded by currently known homologous recombination genes such as recA, recF, recO, and recR, they may fulfill an important function in assembling replisomes on arrested replication forks and products of homologous strand exchange.
منابع مشابه
RecA acts as a switch to regulate polymerase occupancy in a moving replication fork.
This report discovers a role of Escherichia coli RecA, the cellular recombinase, in directing the action of several DNA polymerases at the replication fork. Bulk chromosome replication is performed by DNA polymerase (Pol) III. However, E. coli contains translesion synthesis (TLS) Pols II, IV, and V that also function with the helicase, primase, and sliding clamp in the replisome. Surprisingly, ...
متن کاملThe phiX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition.
Initiation of Escherichia coli DNA synthesis primed by homologous recombination is believed to require the phiX174-type primosome, a mobile priming apparatus assembled without the initiator protein DnaA. We show that this primosome plays an essential role in bacteriophage Mu DNA replication by transposition. Upon promoting transfer of Mu ends to target DNA, the Mu transpososome undergoes transi...
متن کاملAdaptive call admission control and resource allocation in multi server wireless/cellular network
The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adj...
متن کاملTransposition of Mutator–like transposable elements (MULEs) resembles hAT and Transib elements and V(D)J recombination
Mutator-like transposable elements (MULEs) are widespread across fungal, plant and animal species. Despite their abundance and importance as genetic tools in plants, the transposition mechanism of the MULE superfamily was previously unknown. Discovery of the Muta1 element from Aedes aegypti and its successful transposition in yeast facilitated the characterization of key steps in Muta1 transpos...
متن کاملExcision and transposition of Tn5 as an SOS activity in Escherichia coli.
Excision and transposition of the Tn5 element in Escherichia coli ordinarily appear to occur by recA-independent mechanisms. However, recA(Prtc) genes, which encode RecA proteins that are constitutively activated to the protease state, greatly enhanced excision and transposition; both events appeared to occur concomitantly and without destruction of the donor DNA. The recombinase function of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 15 شماره
صفحات -
تاریخ انتشار 2001